
Characterization of Input/Output Bandwidth
Performance Models in NUMA Architecture for

Data Intensive Applications
Tan Li, Yufei Ren, Dantong Yu*, Shudong Jin, Thomas Robertazzi

Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook, NY, 11794, USA

Email: tan.li@stonybrook.edu, yufei.ren@stonybrook.edu, shudong.jin@stonybrook.edu, thomas.robertazzi@stonybrook.edu
*Computational Science Center,

Brookhaven National Laboratory, Upton, NY 11973, USA
Email: dtyu@bnl.gov

Abstract—Data-intensive applications frequently rely on mul-
ticore computer systems, in which Non-Uniform Memory Access
(NUMA) is a dominant architecture. To transfer data into and out
from these high-performance computers becomes a bottleneck,
and thus it is crucial to understand their I/O performance
characteristics. However, the complexity in NUMA architecture
presents a new challenge in modeling its I/O access cost, andthus
lead to difficulties in configuring proper processor and memory
affinity. In this paper, we show that existing NUMA experimental
methods and metrics are inappropriate on contemporary high-
end systems. We characterize a state-of-the-art NUMA host,and
propose, to the best of our knowledge, the first methodology
to simulate I/O operations using memory semantics, and model
the I/O bandwidth performance. Our methodology is thoroughly
tested and validated by mapping multiple parallel I/O streams to
different sets of hardware components (CPU, memory, network
cards, and SSDs) and by measuring the performance of each
mapping. The experimental results and analysis reveal thatour
methodology can dramatically reduce characterization workload,
accurately estimate the overall I/O performance, and effectively
mitigate resource contention among I/O tasks.

Index Terms—Data Transfer, Input/Output(I/O), NUMA ef-
fects, Performance model

I. I NTRODUCTION

Many current high-end systems contain multiple CPU pack-
ages (sockets) on a single motherboard. Processors, memory
banks, and Input/Output (I/O) modules that are distributed
across different domains (nodes) and assembled together by
a cache-coherent, point-to-point interconnect. Each processor
has faster access to the directly-attached memory modules
than the remote ones linked by these interconnect buses. Such
a feature is widely known as Non-Uniform Memory Access
(NUMA). This performance asymmetry becomes more severe
with the current trend of putting more CPUs and cores into a
single host at the expense of losing uniformity [1]. As shownin
Table I, a host with more nodes will be more severely affected
by the NUMA effect due to longer average latency than the
smaller one [2]. Here the NUMA factor is defined as the ratio
between remote access latency versus local one.

However, the term "NUMA" is misleading since mem-

TABLE I
NUMA FACTOR OF DIFFERENT SERVER CONFIGURATIONS

Server type NUMA factor
Intel 4 sockets/4 nodes 1.5
AMD 4 sockets/8 nodes 2.7
AMD 8 sockets/8 nodes 2.8

HP blade system 32 nodes 5.5

ory is not the only resource affected by the asymmetric
nature of a NUMA architecture. Previous studies exposed
a significant I/O performance variation in both latency and
bandwidth. When an I/O access is remote, latency increases
and maximum bandwidth usually decreases for data transfer.
For example, one research [3] benchmarked TCP performance
on two different NUMA testbeds. Their measurement showed
that the placement of the process on remote CPU cores, at
either sender or receiver side, can lead to as much as a30%
loss of the overall TCP bandwidth performance. In [4], the
bandwidth and latency performance of PCIe-attached GPU
hardware was tested by various benchmark tools to compare
the performance of shared I/O hub and dedicated I/O hub
in NUMA systems. The results showed that the penalty of
incorrect NUMA assignment is substantial and asymmetric. A
31% reduction in readback bandwidth and a13% reduction in
download bandwidth were observed for bulk data transfer to
GPU devices.

On the other hand, a recent study [5] showed that, for
I/O devices with higher maximum bandwidth, a larger per-
formance drop is observed if the placement is not aligned
with local memory or CPU. With the introduction of a new
generation of high performance network adapters such as
40Gbps Ethernet and100Gbps InfiniBand server adapters [6],
and Solid-State Drives (SSD) such as the LSI Nytro Drive [7],
the performance problem deteriorates even more. This further
warrants a rethinking of memory and I/O interface affinities
for data-intensive task scheduling.



A. Motivations

Recent studies showed that maximizing data locality does
not always minimize the execution time of data intensive
applications, especially in a multi-user/multi-task cluster en-
vironment. An accurate NUMA cost model is more suitable
to represent every detailed aspect of the system performance
features. The work in [8] indicated that a fraction of the node
resources are specially reserved for remote memory accesses
on the Intel Nehalem and Westmere platforms that take fair-
ness into consideration. Hence, allocating all the tasks locally
cannot take full advantage of the aggregate system memory
bandwidth. Moreover, excessive use of local resources will
introduce contention and congestion among concurrent tasks
on shared queues and buses, and thus degrade the overall
system performance [9].

Most of current performance models and resource assign-
ment algorithms for NUMA architecture [10], [11], [12] are
based on hop-distance, directly or indirectly. Hop-distance is
one of the most popular NUMA metrics, and represents the
number of physical links along the data access path between
two devices. More hops on this path usually imply a higher
access cost. However, hop-distance is not a good indicator
of NUMA penalty, especially to I/O performance, due to the
following reasons.

First, the architectural details of many modern NUMA
systems often are not intuitive to users. In [13], the AMD
architecture designers illustrated three possible topologies of
the 4P AMD Opteron Magny Cours platform, as shown in
Figure 1(a,b,c). For the same type of 4P processors, the authors
of [3] described another topology variant as Figure 1(d). The
exact design of a NUMA system depends on the choices made
by system architects, and is therefore implementation-specific,
even for the same technology specification.

Second, even if the full topological details are known, hop-
distance is still not an accurate metric for actual data transfers
among CPU, memory, and I/O modules. The authors of [1]
demonstrated, for their eight-node AMD host, an overhead
due to cache coherency traffic led to a higher penalty to cores
on the edges compared to middle ones in the host topology.
Even local memory access can have a significant performance
difference over CPU nodes. Moreover, the study in [14] also
showed the impact of OS noise on application performance in
NUMA systems.

Third, it is less straightforward to measure I/O bandwidth
than memory bandwidth, since the bandwidth of peripherals
depends on all resources along the data path between I/O
devices and processors. These resources include PCIe lanes,
CPU interconnect links, various controllers and chipsets,and
the specific PCIe devices that contain the requested data. The
performance bottleneck can reside in any of these. Further-
more, I/O bandwidth is often an order of magnitude lower
than memory bandwidth, and the I/O performance difference
among various NUMA configurations is not as obvious as the
memory access cases.

Consequently, the only way to understand memory and
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Fig. 1. Possible topologies of 4P AMD Opteron Magny Cours Processors.
The oval circles in the plot represent the NUMA nodes, including both CPU
and memory. The lines between them denote high-speed HyperTransport (HT)
interconnections. The width of a link can be 8 or 16 bits.

I/O device access characteristics is to test and analyze all
possible access scenarios using empirical methods. However,
as we will present later, existing NUMA-related tools and
experimental approaches cannot reveal the precise attributes
of I/O bandwidth performance on a given architecture. This
motivates our work presented in this paper.

B. Our Contributions

In this study, a comprehensive memory and I/O band-
width performance characterization is described, using the
state-of-the-art NUMA servers with high-performance network
adapters and SSDs. First, we show the limitations of exist-
ing characterization methods, including the ineffectiveness of
using hop-distance to measure the NUMA penalty, and the
limitations of the well-known STREAM benchmark [15] to
analyze I/O performance. Second, we propose an empirical
method to characterize and predict the relative bandwidth per-
formance levels among various NUMA configurations without
involving the actual I/O devices. The method is validated by
benchmarking I/O operations, including TCP, Remote Direct
Memory Access(RDMA) and disk read/write, in a node level.
Third, we design and develop, to the best of our knowledge,
the first NUMA characterization software for bulk data I/O
tasks. We claim that, with our NUMA characterization method
and tool, accurate I/O bandwidth performance models can be
obtained, and used to improve application I/O behavior and to
assist runtime schedulers for all NUMA platforms.

The remainder of this paper is organized as follows. Sec-
tion II explains the terminologies and existing OS support
for NUMA optimizations. The detailed configurations of the



NUMA host for evaluation and the benchmark tools are
presented in Section III. In Section IV, we describe the exper-
imental results and the analysis of memory and I/O bandwidth
performance characteristics. Section V describes the design of
our proposed empirical methodology and the corresponding
benchmark software. The conclusions and future directionsare
summarized at the end.

II. T ECHNICAL BACKGROUND

A. Terminology

As NUMA systems scale up, it is prohibitively difficult to
implement a full connection for all processors in a host due
to hardware constraints. For instance, the pin constraint of the
AMD G34 (Generation 3, four memory channels) architecture
allows at most four HyperTransport (HT) ports per CPU node.
Additionally, for the bottom nodes in the topology, as shown
in Figure 1, one port is reserved for I/O peripherals. These
design constraints prohibit a fully-connected topology, and
create different physical distances for remote accesses. In
Figure 1, the two CPU dies in the ellipses are physically put in
a tightly coupled multi-chip CPU package. We define "local"
node as all the resources, including CPU cores, memory banks,
I/O devices, directly attached to a single CPU die, and a
"neighbor" node as the resources that are not local, but in the
same CPU package, and "remote" nodes as the resources in
other packages. For example, as shown in Figure 1(a), node
7 is local to itself, a neighbor to node6, remote to nodes
{0, 2, 4} with one hop, and to nodes {1, 3, 5} with two hops.
This implies multiple possible performance levels to access
data.

B. NUMA support in Linux

Modern operating systems are designed to be NUMA-
aware. For example, the default memory policy in Linux
kernel 2.6 islocal preferred. It means that an application’s
data is allocated in its local NUMA node if there is sufficient
memory space available. However, the access pattern to I/O
peripherals depends on individual applications. It is possible
for an application to request an I/O device that is remote to
the processing CPU core and memory regions, and therefore
the application will suffer from remote access penalty.

To support the user level control of NUMA configurations,
Linux system provides a collection of libraries, command line
tools, and hardware counters as follows [16], [17].

• numastat displays the NUMA memory allocation statis-
tics, including the number of hit and miss events of
memory page allocations, from kernel memory allocator.

• numademo is a benchmark which shows the effect of
possible resource affinity policies, such as local, remote,
and interleave. It includes seven test modules, such as
memset, memcpy, and also the STREAM benchmark.

• numactl is a command line utility to configure a specific
NUMA schedule policy for an executable task and all
its child processes. It also can provide the basic sys-
tem NUMA information, such as the relevant distance

between two nodes, but this distance is often inaccu-
rate [18].

• libnuma is a shared library which allows applications
to issue system calls to dynamically configure their own
NUMA policy at runtime.

Several other tools provide additional system information
regarding the NUMA settings. For example, the Portable Hard-
ware Locality (hwloc) utility [19] can be used to analyze /proc
and /sys file systems in Linux and provide a systemic view of a
host architecture. However, it does not include the information
regarding how the NUMA nodes are interconnected in a
system.

C. DMA engine for I/O and memory operations

DMA (Direct-Memory Access) refers to the I/O strategy
where I/O hardware is allowed to directly read and write mem-
ory without involving CPU. Many modern high-performance
devices, such as SSDs, network adapters, and graphic cards,
have their built-in processors and controllers for DMA. DMA
can also be used for "memory-to-memory" copying within
host memory to offloading the tasking of copying a large
block of data copy from CPU. In this paper, we exploit bulk
data transfers within host memory to simulate the real DMA
transfer between host memory and PCIe devices, and try to
obtain the NUMA characteristics of I/O device access.

III. SYSTEM CONFIGURATIONS FORCHARACTERIZATION

In this section, we describe the testbed hardware and the
software benchmark configurations in our experiments.

A. Server hardware specifications

Table II lists the system model and configurations of our
NUMA systems. Each system has four AMD processors and
each processor contains two CPU dies, and thereby two
NUMA nodes. An I/O hub is attached to one of the two dies
in the package. The CPU sockets and I/O hubs are linked by
HT 3.0 interconnections [20], and their topology can be any
of those in Figure 1.

The target host is equipped with two LSI SSDs and a
40Gbps network adapter with the capability of RDMA over
Converged Ethernet (RoCE) [21]. Another identical host is
used in the network performance test, as shown in Figure 2.
All network adapters and SSDs are directly attached to node7,
and we will use node7 as the exemplary node hereafter. All
network interfaces are optimized based on vendor’s recom-
mendations [22]. The Round Trip Time (RTT) between the
two hosts is about 0.005ms, as reported byping.

B. Benchmarks and affinity settings

The focus of our work is the relative user-level bandwidth
performance under all possible NUMA scenarios. As stated in
[5], improving the absolute bandwidth can lead to more no-
ticeable NUMA effect, and thus facilitate our comparison and
analysis. Therefore, we optimize our testbed and benchmark
settings as follows.



TABLE II
CONFIGURATION OF THEAMD 4P SERVER

Motherboard HP ProLiant DL585 Gen 7
Chipset AMD SR5690/SP5100

CPU Model AMD Opteron 6136 Magny-Cours @ 2.4GHz
CPU cores/NUMA nodes 32/8

Memory 32GB
Last level cache(LLC) 5MBytes

I/O Bus PCI Express Gen 2 x8 lanes
Linux Kernel 2.6.32-279.19.1.el6.x86_64
SSD Drive LSI Nytro WarpDrive WLP4-200 Card

Network Interface Cards
ConnectX-3 EN Dual Port

40 Gigabit Ethernet Adapter
Network Interface Card

Driver MLNX_OFED_LINUX-1.5.3

Assistant NUMA serverTarget NUMA server
CPU0

Node 0

Network Adapter

LSI SSD Drive

Network Adapter

40G link

Node 1

CPU1
Node 2

Node 3

CPU2
Node 4

Node 5

CPU3
Node 6

Node 7

CPU0Node 0

Node 1

CPU1Node 2

Node 3

CPU2Node 4

Node 5

CPU3Node 6

Node 7

Fig. 2. System connection diagram for characterization. All PCIe devices
are connected to node 7.

1) Memory benchmark:The STREAM benchmark is used
to determine the maximum aggregate memory bandwidth be-
tween two NUMA nodes. The performance measurements re-
ported by STREAM highly depend on compilers. We optimize
the benchmark compilation according to the recommendation
of the AMD technical document [23], and also take advantage
of the -fopenmpcompiling flag to enable multi-threaded tests.
The STREAM benchmark executes four types of memory
access operations on large data arrays, but they exhibit a
similar performance on modern machines. Herein, we choose
theCopyoperation for our characterization, because it contains
no computation, and is similar to I/O data transfer behavior. In
order to eliminate CPU cache effect, STREAM requires that
each array be at least four times as big as the largest cache
used. In our case, the LLC size is5MBytes per CPU die, and
thereby the array contains at least20MBytes, or 2, 621, 440
long integers.

2) I/O benchmark:Flexible I/O Tester (fio) [24] is a user-
level benchmark tool used to characterize system’s PCIe
device access performance. This test tool spawns a number
of processes performing I/O jobs with user-defined I/O oper-
ations and desired parameters. It supports a wide spectrum

of I/O operations, such as disk read/write and TCP/UDP
network data transfers. We also added RDMA engines into this
tool, and extended its capability to support RDMA_READ,
RDMA_WRITE, and SEND/RECEIVE operations [25]. Fur-
thermore, we redirected the hardware interrupts generatedby
I/O devices to their local CPU node.

IV. EXPERIMENTAL CHARACTERIZATION

A. Memory performance characterization

In this section, for each test case, the STREAM benchmark
is set to run100 times, and it reports the maximum observed
bandwidth instead of the mean value.numactl is used to
pin each benchmark process/thread to a desired CPU/memory
node. Benchmarking every memory data access scenario in
a NUMA system entails mapping benchmark threads and
their memory in every possible configuration that a data
intensive program might encounter during its execution. For
modern multi-core systems, mapping threads to individual
cores greatly expands the test set. Cores attached to the same
NUMA node are supposed to show the identical memory
and I/O bandwidth when accessing data on a given node, as
shown in previous literature [3], [18]. Hence, we need only to
focus on node-level characterization. Meanwhile, four parallel
threads are used in each test, since each NUMA node has four
CPU cores.

After benchmarking, aN × N bandwidth matrix can be
obtained, whereN is the number of configured NUMA
nodes in a host. This is shown in Figure 3. The bandwidth
performance exhibits asymmetry among tests. For example,
when STREAM runs on node7 to access data from node4,
we obtain a bandwidth of21.34Gbps, which is better than
the two cases of accessing data on node2, 3respectively.
However, when the benchmark runs on node4 to access data
on node7, only 18.45Gbps is achieved, and this is worse
than the performance of running the benchmark on node2, 3.
This issue can result from the asymmetric setup in the AMD
hardware, such as the number of request and response buffers,
and link width configuration for cache coherent traffic [20],
[26].

Another noticeable observation is that when STREAM runs
on node0 to access the data on the same node, the performance
is apparently higher than that of other local NUMA binding
cases. Note that all OS buffers and shared libraries reside on
memory allocated in node0, and thus the cores of node0
have an unfair advantage compared to the other processors.
To validate our observation, we use the "numactl ––hardware"
command to show the size of free memory per node. Executing
this command without any application running, we notice that
all nodes have almost4GBytes free memory, except for the
first one with only1.5GBytes free memory. This observation
proves that the first node uses more memory than the others
in an idle system.

Furthermore, from the test plots, we can see the local node
has the best performance, and the neighboring node has the
second best. If we use hop-distance as the decisive factor of
the NUMA cost, then we should have observed: 1) the nodes
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Fig. 3. Bandwidth performance model by STREAM benchmark copy
operation. "CPUn" denotes all STREAM test threads running on noden,
and "MEMn" denotes all test STREAM threads are accessing the data on
noden.

with the highest bandwidth are local nodes, 2) the second best
one is the nodes that are one hop away, and, 3) the nodes
with two hops aways have the lowest bandwidth. We can then
derive the topology of our tested NUMA host. However, the
connectivity inferred from the test data does not match any
of the topologies shown in Figure 1. We cannot either draw
any reasonable topology due to the performance asymmetry
we just mentioned. Therefore, it is inappropriate to simply
use the physical distance to determine the NUMA cost for
memory bandwidth performance modeling.

B. I/O performance characterization and analysis

Since hop distance cannot represent the accurate memory
bandwidth performance model, we resort to benchmark ap-
proaches. One benchmark is STREAM. For example, in [18],
the authors built a memory access cost model via the
STREAM benchmark, and then confirmed it with multiple
other benchmark tools. They then integrated the model into
a benchmark toolkit calledcbench[27]. In this section we
will examine this approach as well.

We provide a full characterization of node7 using STREAM
benchmark and the same configuration in Section IV-A, and
show the results in Figure 4. Figure 4(a) depicts the cases
when STREAM benchmark runs on node7 to access data on
all nodes. We call this model a "CPU centric" characterization.
Figure 4(b) illustrates the cases when the data is on node7
and is accessed by all nodes. This is called "memory centric".

1) TCP performance characterization:Here we present
the analysis of high-speed network data transfer across the
PCIe interconnect to/from a selected NUMA node with both
TCP and RDMA protocols. This involves measuring write rate
(sending data to I/O devices) and read rate (receiving data from
I/O devices). As stated in Section II-B, the default NUMA
policy in current Linux islocal-preferred. The I/O applications
can always be guaranteed with local memory space if possible.
However, application threads may run on a node that is remote
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Fig. 4. Bandwidth performance models of node7, produced by STREAM
benchmark

TABLE III
PARAMETERS FOR NETWORKI/O TESTS, INCLUDING TCPAND RDMA

Data size requested by each test process400GBytes
TCP Variant Cubic
IO block size 128KBytes

Ethernet frame size 9000

from I/O devices. The application performance model can act
as either CPU centric or memory centric, as shown in Figure 4.

Table III describes the network test configurations. In order
to get an accurate and stable bandwidth performance, each
data stream is required to transfer400GBytes of data, and the
average aggregate performance is then reported. All test cases
will allocate buffers in their local memory space, and then
vary the NUMA node where the fio benchmark is executed.
Figure 5 shows the aggregate bandwidth performance with var-
ious numbers of concurrent streams, and with different NUMA
setups on data sender side and receiver side, respectively.

The network adapters use the PCIe Gen 2.0 8x peripheral
interface which supports a maximum of40Gbps raw transfer
rate. Due to the 8/10bit encoding used for the PCIe Gen2
protocol, the available data bandwidth is degraded to32Gbps.
The real available bandwidth is further decreased by the
inherent overhead of network protocols (Ethernet, TCP/IP,
RDMA). Therefore, the maximum bandwidth of25Gbps in
our tests is very close to the theoretical performance limit.
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Fig. 5. TCP bandwidth performance characteristics

For TCP performance in Figure 5, the bandwidth grows
when the number of concurrent streams increases until there
are four parallel streams. When the number of concurrent
streams further rises, the contention among them begins to
introduce some unexpected behavior. Therefore, sometimes,
the performance of node5 appears to be the best when there
are eight or sixteen current threads. Overall, it seems thatthe
TCP send performance in Figure 5(a) is close to that in the
CPU centric model, while the TCP receive performance in
Figure 5(b) is close to that in the memory centric model.

Another finding is, when the data path is bound to the
local node7, the performance is not always the best. In many
cases, we can get better performance when we allocate CPU
and memory resources on node 6, the neighboring node of
node 7. This is because all interrupts from I/O device are
handled locally by node7, as stated in Section III-B2. When
we run all application processes on node7, the contention
among multiple tasks will lead to a performance degradation.
On the other hand, node 6 also has its own on-chip access
to the I/O devices, and does not have the distraction of I/O
interrupt handling, and therefore this binding results in an even
better performance than the local node7.

2) RDMA performance characterization:For the RDMA
performance in Figure 6, the bandwidth is more stable than
that of TCP. That is because RDMA operations offload most
of their protocol precessing to network adapters, and signif-
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Fig. 6. Bandwidth performance characteristics of RDMA operations

icantly reduce resource contention on host. RDMA_WRITE
bandwidth performance is close to that in the CPU centric
model, but RDMA_READ does not match with neither the
CPU centric model nor memory centric model in Figure 3.
For example, in both models of Figure 3, the performance of
node {0, 1} cases is better than that of node {2, 3} cases
by 43% to 88%, respectively. When RDMA_READ runs on
node {0, 1}, its bandwidth performance is worse than that of
node {2, 3} by15% to 18.4%. By looking at the TCP receive
performance in Figure 5 again, we can see that the bandwidth
of node {2, 3} cases still slightly outperforms that of node {0,
1} cases. All above indicate that the performance models in
Figure 3 cannot be applied to network I/O traffic.

3) Disk I/O performance characterization:In order to fur-
ther confirm the mismatching of performance levels we found
in Section IV-B2, we provide the bandwidth characterization
for PCIe-based SSDs using the fio benchmark. We observe
that regular kernel-buffered read/write operations perform
much worse than kernel-bypassed ones, and asynchronous
I/O operations outperform synchronous ones on our testbed.
Therefore, we utilize the libaio engine with the kernel-bypass
option to maximize transfer speed. In order to further increase
the aggregate bandwidth, two LSI SSD cards are accessed
simultaneously, and the overall bandwidth performance is
reported. Hence, the total number of test processes is at least
two. Each test process transfers400GBytes of data, with a
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Fig. 7. Bandwidth performance characteristics of disk I/O operations

block size of128KBytes and an I/O depth of16. Figure 7
depicts the aggregate bandwidth performance with multiple
test processes. As expected, the disk write rate corresponds
to the TCP/RDMA send rate in previous tests, and the disk
read rate here corresponds to the TCP/RDMA receive rate.
However, none of these I/O performance characteristics is
consistent with the STREAM benchmark results in Figure 3.

C. Analysis of performance mismatching

All above results proved that the NUMA characteristics
captured by STREAM benchmark do not match with the
I/O performance model, especially when application processes
read data from I/O devices. The performance inconsistency
among the models produced by STREAM and I/O operations
may be ascribed to the following reasons:

• Transfer data using PIO engine or DMA engine. In
STREAM test, an application requests a large amount of
memory to create and initialize two big arrays ofdouble

values, and then copies one array to the other, one item at
a time. For this small message transfer, CPU is supposed
to utilize Programed I/O (PIO) to move the data by
itself. On the other hand, for bulk data transfer between
memory and I/O device, CPU will offload the I/O task to
DMA engine, and the actual data transfer will therefore
bypass CPU. According to the AMD specifications [26],
the difference of routing methods between CPU core

access and memory access makes us believe that the
PIO communication and DMA communication can have
distinct paths within the involved hardware.

• Data source and sink locations of data transfer oper-
ations. The STREAM benchmark itself does not support
NUMA awareness for either the location of program code
or the location of allocated memory. To enable it to be
aware of the NUMA architecture, we rely on thenumactl
command line tool to statically binding all the memory
and CPU resources during the entire execution time. In
Copy operation, both the data source and sink can only
be bound to the same NUMA node, as illustrated in
Figure 8(a). Meanwhile, for I/O operations, the source
and sink can be in different NUMA nodes, as shown
in Figure 8(b). This difference can also lead to different
performance characteristics.

V. NUMA CHARACTERIZATION METHODOLOGY FORI/O
OPERATIONS

In the previous section, we showed that hop-distance and
NUMA characterization based on STREAM benchmark can-
not capture I/O performance attributes. Therefore, we need
other appropriate methods, and in this section, we propose a
new one.

A. Proposed methodology for NUMA I/O performance model

We utilize memcpyoperation andlibnuma library to move
a large bulk of data between a given source memory node
and a target memory node, as shown in Figure 8(c). Herein,
a target NUMA node refers to the node that is directly
attached to I/O devices and needs to be characterized. In
this way, we assume that a CPU offloads slow data copy
operation to the device’s DMA engine. We can simulate the
behavior of the DMA engine with a "memcpy" process that
is bound to the target NUMA node. The operation of our
proposed methodology solves the two mismatched behaviors
we mentioned in Section IV-C, and therefore can be utilized
to build a bandwidth performance model for PCIe based I/O
tasks. The detailed procedure of our proposed methodology is
shown in Algorithm 1. It first finds out the number of parallel
threads, i.e., the number of CPU cores in a single NUMA
node. Then multiple test threads are initiated to copy data
simultaneously and independently.

For PCIe based I/O operations, CPU offloads data transfer
tasks to the DMA engine in I/O devices. After this, DMA will
take care of data transfers. For data write cases, the DMA
engine reads data from the host memory, and stores it into
the buffers inside I/O devices. In data read cases, DMA reads
data from the buffers in the I/O hardware, and writes to the
host memory. To simulate these scenarios, we enforce all the
data-copy threads running on the target node to simulate a
DMA engine in I/O devices. In the simulating cases of writing
into I/O devices, the data sink is statically bound to the target
node and the source node varies among the tests, as shown
in Figure 9(a). In the reading test cases, we fix the source
to the target node and vary the data sink node, as illustrated



Fig. 8. (a) Data copy process in STREAM benchmark. Both data source and sink are located in node 1. (b) Data copy process in I/O operations. Data
source is in node 0 and sink is in node 1. (c) Data copy process in proposed method. Data source is in node 0 and sink is in node 1.

Fig. 9. Simulate I/O behavior with memory copy operation. Assume that
there are4 nodes in the system and I/O device is attached to node 3, so the
target node for testing is node 3. (a) I/O device write simulation. Data sink
locates at node 3, and data source varies among test cases (b)I/O device read
simulation. Data source locates at node 3, and data sink varies among test
cases.

in Figure 9(b). In this way, without involving I/O devices,
we can emulate the I/O data transfer with only memory
copy operations, and learn the I/O performance characteristics
without costly I/O benchmark tests.

Figure 10 shows the I/O device write and read bandwidth
performance with our proposed methodology. We can see
that this result matches the I/O bandwidth performance levels
we showed in Section IV-B. Some performance differences
captured by our tool are not reflected in I/O test results. As
stated in Section I-A, the I/O bandwidth performance can be
impacted by various factors. In these cases, the I/O bandwidth
bottleneck is not related the NUMA penalties. We categorize
all the nodes into different classes in Table IV as the device
write model and Table V as the device read model, according
to their relative performance in Figure 10. The local and
neighboring nodes are always be assigned to the first class,
and the main task of our methodology is to classify the remote
nodes. The performance models in both tables were first
obtained by the proposed method, and then used to compare
and analyze the actual I/O performance characteristics.

B. Implementation and application of the I/O performance
model

The methodology used to model the performance of node7
can also be generalized to other nodes in the host and
other NUMA systems. We have implemented the methodology
generally applicable as aniomodel test module, adding to

Algorithm 1: NUMA I/O performance modeling

Input : NODES TO CHARACTERIZE: k, MODEL TO

OBTAIN : model

1 n← numa_num_configured_nodes()
2 m←num_configured_cores() /n
3 for i← 1 to n do
4 for p← 1 to m do
5 if mode = write then
6 Allocate memsrc[p] in NUMA nodei
7 Allocate memsnk[p] in NUMA nodek

8 if mode = read then
9 Allocate memsrc[p] in NUMA nodek

10 Allocate memsnk[p] in NUMA nodei

11 for p← 1 to m do
12 Create thread[p], bind to nodek, copy from

memsrc[p] to memsnk[p] for 100 times and
record the average bandwidth

13 for p← 1 to m do
14 thread_join(thread[p]);

15 if mode = write then
16 Generate I/O device write performance model for

nodek

17 if mode = read then
18 Generate I/O device read performance model for

nodek

19 return

TABLE IV
NUMA I/O BANDWIDTH PERFORMANCE MODEL FOR DEVICE

WRITE(UNIT:GBPS)

Class 1 Class 2 Class 3
Operation Node ID 6, 7 0, 1, 4, 5 2, 3
Proposed
memcpy

Range 46.5 – 55.9 42.9 – 46.9 26.0 – 27.3
Avg 51.2 44.5 26.6

TCP sender Range 19.6 – 20.9 20.0 – 21.0 16.2 – 16.3
Avg 20.3 20.4 16.2

RDMA_WRITE Range 23.3 – 23.3 23.2 – 23. 3 17.0 – 17.1
Avg 23.3 23.2 17.1

SSD write Range 28.6 – 29.1 28.1 – 28.9 17.9 – 18.0
Avg 28.8 28.5 18.0
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Fig. 10. Bandwidth performance model of node 7 by the proposed
methodology

TABLE V
NUMA I/O BANDWIDTH PERFORMANCE MODEL FOR DEVICE

READ(UNIT:GBIT /S)

Class 1 Class 2 Class 3 Class 4

Operation
Node
ID 6, 7 2, 3 0, 1, 5 4

Proposed
memcpy

Range 47.1–51.2 46.9–50.3 39.9–40.9 27.9
Avg 49.1 48.6 40.4 27.9

TCP receiver Range 20.3–22.0 19.6–20.4 19.8–21.1 14.4
Avg 21.2 20.0 20.6 14.4

RDMA_READ Range 22.0–22.0 22.0–22.0 18–18.5 16.1
Avg 22.0 22.0 18.3 16.1

SSD read
Range 34.7–34.7 32.3–32.9 29.7–30.9 18.5
Avg 34.7 33.1 30.1 18.5

in the standardnumademosoftware package. The obtained
performance models from our methodology and software, as
illustrated in Table IV and Table V, can then bring in the
following advantages:

• Reduce the cost to capture the NUMA characteristics
of the entire system. In the performance model, we
assume that all the nodes in the same class have similar
bandwidth performance. While we want to understand
the NUMA impact on system performance, instead of
benchmarking all possible combinations, we can examine
only one node from each class. For example, in the
case of Table V, if we characterize the read speed of
I/O devices attached to node7, we only need to test
four different NUMA setups from four classes. These
representative tests will provide the same results as the
whole testcase space (eight cases). Hence, the evaluation
cost decreases by50%.

• Predict the overall performance in multi-user environ-
ment. When an I/O device is shared by multiple users, it
is highly possible that the data-access requests come from
different NUMA nodes. Assume that we have achieved
the performance model of the node attached to the I/O
device using our method. LetBWi be the average band-
width performance of classi in the performance model,

andαi% be the percentage of the data accesses that come
from classi, wherei ∈ [1, · · · , N ], whereN is the total
number of classes. We predict the aggregate performance
for the I/O device using the following model,̂BW io.

ˆBW io =

N
X

i=1

αi%×BWi (1)

For example, in the case of RDMA_READ in Fig-
ure 6(b), if two processes transfer data from node 2
(of class 2) to the network card, and two other pro-
cesses access from node 0 (of class 3), the overall
bandwidth is estimated as ˆBWio = 50% × 18.036 +
50%× 21.998 = 20.017Gbps. We run this configuration
with fio benchmark. Since the bandwidth performance
is stable over the whole data transfer process, instead
of showing the distribution of multiple repetitive test
results, we demonstrate the average aggregate bandwidth
while transferring a large amount of data (400GBytes per
process), which is19.415Gbps. Hence, the relative error
is ε = |20.017−19.415|

19.415
× 100% = 3.1%. This example

shows that our model can estimate the overall bandwidth
of the I/O devices in a multi-user scenario.

• Assist resource schedulers on NUMA systems.With
application-layer NUMA scheduling, a programmer
should have enough information about a system’s NUMA
characteristics. With this, numerous scheduling algo-
rithms [28], [29], [30] can be applied to modern high-end
NUMA systems. For example, as we mentioned before, in
a multi-user environment, binding all I/O tasks to their
local node will lead to severe performance degradation
due to the contention of shared resource. With the knowl-
edge of our performance model, the task scheduler can
distribute application processes to nodes in the same class
or the classes with the same performance. For example,
in the case of RDMA_WRITE in Figure 6(a), after
our characterization, we know that class1 and class2
have almost identical performance. Therefore, instead of
allocating all application processes to node7 only, we
can evenly split the task processes among all nodes in
class1 and class2. Therefore, the overall performance
will be improved due to much less contention for shared
resources.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we addressed the problem of accurately char-
acterizing and predicting I/O bandwidth performance in mod-
ern high-end NUMA systems. Directly applying a software
benchmark to characterize memory and I/O hardware might
lead to unexpected performance inconsistency among multiple
tests, and can potentially generate a daunting experimental
load. We illustrated the reasons why existing NUMA-related
metrics and tools cannot solve the problem by quantitative
comparisons. We then proposed our own methodology and
software to obtain the I/O bandwidth performance model
without involving the actual I/O hardware to be modeled



and costly I/O benchmarking process. To the best of our
knowledge, our work is the first attempt to propose an I/O per-
formance model based simple memory operations for NUMA
systems. The experimental results confirmed that our empirical
method can predict the I/O bandwidth characteristics among
various NUMA architectures. At last, we provided concrete
examples to illustrate the applications of the performance
models produced by our methodology.

There are two directions of our future work: 1) we will
continue working on the mechanisms of placing and migrating
parallel I/O threads for data-intensive applications based on
the result of our characterization methodology, and 2) we will
study more delicate issues such as architectural details leading
to performance asymmetry and tradeoffs between data locality
and resource contention.
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